Royalty- CCU Follow Up
CASE-
37yo M, GSW to chest
Awake, stable.
RUQ fluid, no pericardial effusion.
Bullet fragment in pelvis on xray, cxr unremarkable.
Ex-lap w extensive intra-abd injury
Trans diaphragmatic pericardial window performed
POD2 pt develops chest pain
EKG with anterior q waves. Upright T wave in V1.
LEARNING POINT – Assess precordial T wave balance when you see an upright T wave in V1. Typically T waves should be more upright in V6 than in V1. If they are more upright in V6 consider ischemia in the right clinical setting.
(exceptions include LVH, LBBB, others)
BACK TO THE CASE
Pt’s troponin returned elevated and went for cath- 90% LAD, LCx with total occlusion, RCA with 90%
Pt was diagnosed with T2 NSTEMI due to low flow state in the setting of chronic obstructive CAD without acute plaque rupture
TAKE HOME-
Beware upright T waves in V1- suggestive of underlying or acute ischemia
In this setting assess precordial t wave balance
Always follow serial EKGs when concerned for ischemia
Additional discussion-
Look for signs of prior MI, may act to increase suspicion/pre-test probability for acute MI
Type 1 MI- ischemia secondary to plaque rupture
Type 2 MI- ischemia secondary to reduced blood supply (often in the setting of chronic CAD
Weeman- MICU f/u
CASE
38yo F G6 P4 presents at 20W+1D. dyspneic, pleuritic chest pain.
PMH with protein S deficiency, prior TIA during a previous pregnancy
Uses enoxaparin, methadone. Hx of drug use and alcoholism
On exam pt is in resp distress, 92% on 14L NRB. B/L reduced breath sounds
No obvious DVT
Workup w bilateral CXR infiltrate- ARDS pattern, TTE with EF 69%.
– Pt was admitted to MICU, 45L, 100% on HFNC. On abx and steroids
– Gradually worsened, became uncooperative but was eventually intubated around 1 week into stay.
– All infectious cultures and covid swab were negative, abx were stopped
– Eventually weaned vent and extubated to 4.5L NC. Sent to floor, began to deteriorate but refused ICU. Overnight BIPAP on the floor, then to HFNC and moved to ICU
– On return to ICU was started on 40mg methylprednisolone 40mg q8 and improved, transferred to floor and now on 2L
Dr Hart Neonatal ED Presentations
INTRODUCTION
Normal neonates undergo significant stress + change-
Drop in pulmonary pressures causes increased pulmonary circulation
PDA closes
Most common ER attendances are jaundice, difficulty breathing, fussiness, feeding problems, stooling issues and irritability/lethargy
Fussiness
****Differential- IT CRIES****
– I- infection
– T- Trauma.tourniquets
– C- Cardiac disease
– R- Reflux/rectal fissure, reaction (to meds)
– I- intussusception
– E- Eyes (corneal abrasion, foreign body, glaucoma)
– S- strangulation, surgical process (hernia, torsion, volvulus)
**Do a FULL exam**- take special note of HEENT, HR/monitor, GU, extremities for tourniquet, fracture, septic joint
Hair tourniquet- Usually extremities. Also penis/clitoris. Can usually unwind w forceps. If required can incise through hair, skin.
Corneal abrasions- Look for conjunctival injection. Flurorescein stain
Jaundice-
Newborn jaundice is usually catabolism of hb unconjugated
First thing is to send fractionated bili to assess
Unconjugated causes- Physiologic, breast milk jaundice, Hemolysis- ABO incompatiblity
Conj-
Jaundice in first 24 hours of life is ALWAYS pathologic
1- Send fractionated Bili
2- Compare this to the normogram to assess home vs inpatient, phototherapy vs exchange transfusion
3- other labs, eg type and screen if requires exchange transfusion
Conjunctivits-
12-24hours of life- Chemical
2-5 days- Gonorrhea
5-14 days- Chlamydia
Gonorrhea is typically more severe and more purulent
Send pus for drain/culture- for either chlamydia/gonorrhea admit for parenteral abx (topical treatment used only for prophylaxis against gonorrhea)
Feeding/stooling problems
Feeding-
Newborns feed on demand, may be small, frequent intake, not concerning unless gaps >4 hours or so
By 1 month usually take 2=4 hours every 2-4 hours
Spitting up often secondary to overfeeding
Stooling-
Rule of 7s- >7 times per day abnormal, 100.4) <4 weeks, or <60 days if they look unwell- full sepsis workup for SBI- CBC, CMP UA, CRP, Procal, LP, urine and blood culture. CXR if resp sx.
Above may change with new literature on use of procal. See protocols in peds ED
Most common pathogens at this age are GBS, E Coli, Listeria (also consider HSV, and if any suspicion at all test and treat early)
Ampicillin and cefotaxime / amp and gent as broad abx coverage (switch ampicillin for vancomycin if high concern for meningitis)
Sepsis mimics- pertussis, CHD, Inborn error of metabolism
Always look for omphalitis- assess the umbilical stump for cellulitis, swelling, drainage, crepitus. This can progress from mild appearance to fatal very quickly (hours) given proximity to central vasculature and peritoneum. Usually cause by staph
Seizure like activity-
Differential- Seizures, infantile spasms, hypoglycemia, benign myoclonus, uncoordinated sucking movements, disconjugate eye movements
Check glucose, check temperature, cbc, rfp, magnesium
Seizure aetiology-
– Perinatal asphyxia/hypoxia/cerebral ischemia
– Infection
– Hypoglycemia
– Hyponatremia How are they making formula (too much water hyponatremic seizures)
– Trauma (SDH)
Seizure neonate mx-
1st Line- Lorazepam 0.1mg/kg
2nd Line- Phenobarbital 20mg/kg (Or levetiracetam 60mg/kg)
If seizures aren’t controlled with above and electrolytes/glucose are normal give pyridoxine (as well as other third line seizure meds)
Congenital heart Disease
Will present with shock, cyanosis, heart failure- poor perfusion, difficulty feeding, respiratory distress, hypoxia, hypotension
Crashing neonate is statistically more likely CHD than sepsis
Get four extremity blood pressures
Note absence of response to O2 suggests cardiovascular abnormality, presence of response suggests pulm
Cyanotic –
– Truncus arteriosus
– TGA
– Tricuspid atresia
– ToF
– TAPVR
– HLHS
Non cyanotic-
– ASD
– VSD
– AV canal
– Coarctation
Have a VERY low threshold for starting prostaglandins in crashing/hypotensive neonate but watch out for respiratory depression.
Once on this pathway target SaO2 of 75-80%
If prostaglandins aren’t working, consider adding inotropes in discussion w pediatric center. Consider dx of persistent pulmonary hypertension. Prostaglandins don’t work- pt’s require hyperventilation, nitric oxide, ECMO
Dr O’Brien- introduction to ED Echocardiography
4 main views used in the ED-
– Parasternal long axis (often PSLAX)- for effusion, EPSS, LVOT diameter, visual assessment of LVEF
– Parasternal short axis (often PSAX)- for AV/MV assessment. For right heart strain, regional wall motion abnormality
– Apical four chamber (often A4C)- For TAPSE, other right heart strain measures, for MV/TV assessment.
– Sub-xiphoid- For pericardial effusion, assessing IVC,
Note that required probe positioning and orientation is variable and depends on the patient, the selected machine settings. Note that all probe positioning should be relative to the heart, not the patient, and so should be learned through repeated exams.
Vast array of skill levels/uses for echo- below is most basic most advanced-
– Most basic is assessing for the presence/absence of pericardial effusion and cardiac activity- easiest in the sub-xiphoid view or the parasternal long axis. In the PSLAX assess the position of the effusion relative to the descending aorta. Anterior to the DA is pericardial effusion, posterior is pleural effusion.
– Then looking at valves (eg mitral regurgitation in a febrile IVDA – might suggest infectious endocarditis)- often via the apical apical 4 chamber
– IVC for respiratory variation in diameter- >2.1cm with <50% collapse with a sniff inhalation (in spontaneously breathing patient) suggests CVP 10 or greater, and poor fluid responsiveness. Find the IVC from the sub-xiphoid position. (note and think about/look for the many possible confounders- tricuspid valve pathology for example)
– Assess LV for systolic function. EPSS (end point septal separation) is the simplest way to do so. Follow the tip of the anterior leaflet of the mitral valve throughout the cardiac cycle on M mode. <6mm separation from the septal wall at the most anterior point suggests normal LVEF. Do this from the parasternal long axis
– Assess for HFpEF by comparing E + A waves just LV side of mitral valve on doppler mode (can do from parasternal short axis
– Assess for RV failure with views of RV for TAPSE, McConnel’s sign. Find the most rightward point of the tricuspid valve (farthest from the septum) and assess range of motion throughout the cardiac cycle on M mode. Distance moved is the TAPSE (<16mm suggests RV systolic dysfunction). Also look for RV-LV diameter >1:1 and apex of RV ‘trampolining’ on the barely moving RV free wall (McConnel’s sign). Directly calculating RV systolic pressure is more complicated.