Antibiotic Overview

Chrissy Duff, PharmD, BCPS Clinical Pharmacist- Emergency Medicine

Overview

- Review 2013 antibiogram
- Briefly review EAST guidelines
- Discuss commonly seen infections in the ER

AMBULATORY CARE/ED PATIENTS

		Inc	lud	es	isol	ate	s ol	btai	nec	fro	om:	out	tpa	tien	ts a	and	inp	atie	ents	sac	Imit	ted	for	<4	da	ys
		Total # isolates	Ampicillin	Ampicillin/Sulbactam	Nafcillin	Penicillin	Piperacillin/Tazo	Cefazolin	Ceftriaxone	Cefepime	Imipenem	Meropenem	Aztreonam	Gentamicin	Tobramycin	Amikacin	Ciprofloxacin	Levofloxacin	Clindamycin	Tetracycline	Trimeth/Sulfa	Vancomycin	Daptomycin	Linezolid	Azithromycin	Erythromycin
(Enterobacter cloacae	46		11			89		72	91	100	100	89	89	89	98	89	93		83	80					
6 2	E. coli	542	48	52			96	84	92	93	100	100	89	90	90	100	70	70		71	71		29	%		
Gram	Klebsiella pneumoniae	134		85			95	92	96	96	100	100	91	95	94	100	91	96		80	94					
ž	Pseudomonas aeruginosa	168					84			80	75	86	69	72	87	79	61	60		9%	5					
	Proteus mirabilis	73	89	87		V	100	92	100	100	99	100	92	92	93	93	73	78			75					
	Enterococcus faecalis	105	99											66 ¹								99	100	100		6%
Î	Enterococcus faecium	32	19											66 ¹								31	97	91		
	Staphylococcus aureus																									
	Methicillin Sensitive (MSSA)	288			100			100											82 ²	94	100	100	100	100	2	3%
Gram	Methicillin Resistant (MRSA)	314			0			05	29	6									66 ²	94	98	100	100	100		570
Pos	Coagulase-negative Staphylococci	72			51																58	100	100	99		
	Streptococcus pneumoniae	75																								
	non-meningeal breakpoints					96			99									99			69	100			54	53
	meningeal breakpoints					47			93									99			69	100			54	53
		Alashi -																								

Louisville Hospital Unit Census - Default Unit Census Pharmacy Consult List Name Inquiry MR Number Inquiry Pt Number Inquiry SSN Inquiry Service Census Care Provider Census Medical Records Fast Path Chrgs Send Printed Message Antibiograms Medication Formulary Drug Use Guidelines Isolation Precautions Insurance Links Links Nurses View

University of

Antibiograms

The antibiograms represent current antimicrobial susceptibility patterns at the University of Louisville Hospital. The goal of compiling these antibiograms is to provide clinicians with information that enables them to make the most appropriate antibiotic choices for empiric therapy. The current antibiograms are compiled from 2013 susceptibility data.

The organisms included in each antibiogram are limited to those for which at least 30 isolates were available for testing. Unless otherwise indicated, all percentages include susceptible isolates only.

ICU patients (5W, BURN, MICU, CCU, 8W, SICU, and STROKE) Non-ICU patients (LDR, 3S, 5E, 5S, 7E, 7S, 8E, 8S, 9E, and 9S) CHECOLOGY patients (6E, 6S, and Brown Cancer Center) AMBULATORY patients (ED, outpatients, and inpatients admitted < 4 days) sm Incidence

Antifungigram (2013 antifungal susceptibility information)

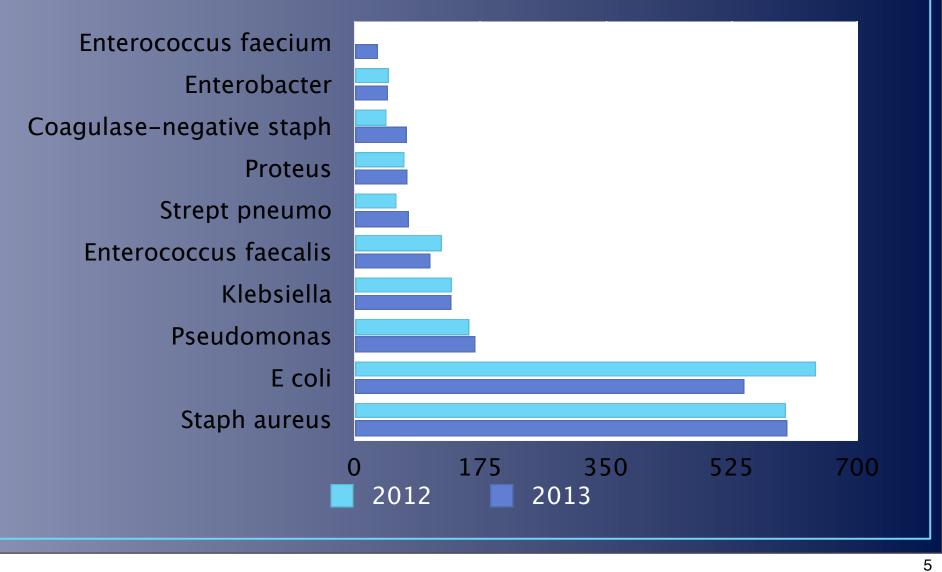
Interpretation of Gram Stain Results

The antibiograms listed below provide susceptibility patterns at Jewish Hospital and Frazier Rehabilitation Institute. These are for informational purposes only.

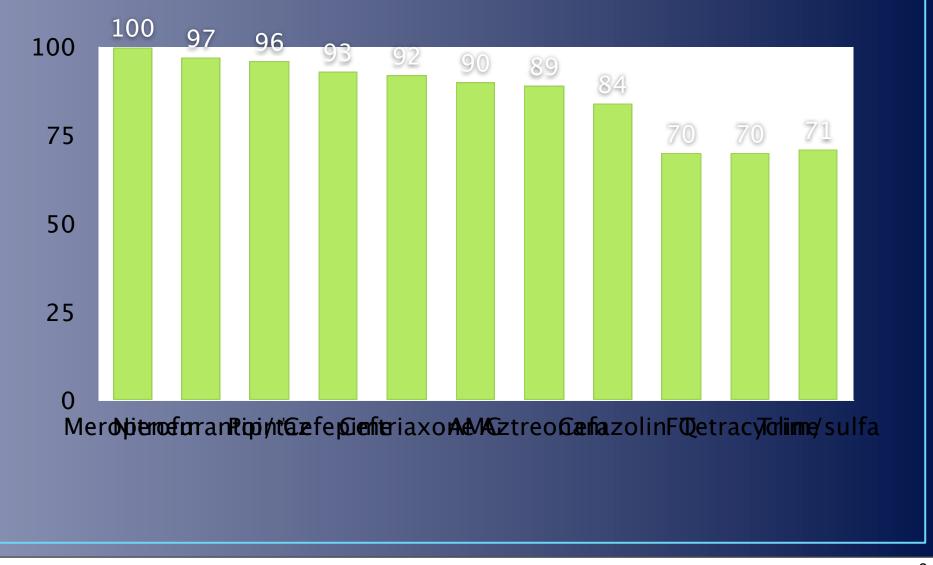
Jewish Hospital Antibiogram House-wide (Shelbyville excluded)

Jewish Hospital Shelbyville

Jewish Hospital Antibiogram Pearls


Frazier Rehabilitation Institute Antibiogram Inpatient (ALL sites included)

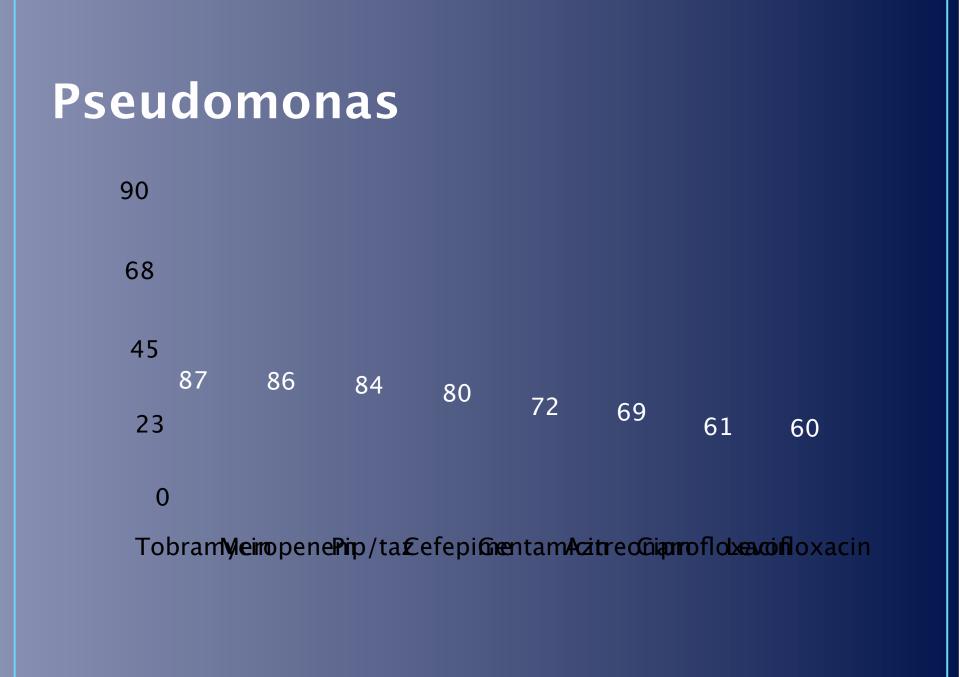
Frazier Rehabilitation Institute Antibiogram Pearls


Sts Mary and Elizabeth (SMEH) Antibiogram

Sts Mary and Elizabeth (SMEH) Antibiogram Pearls

Organism Incidence 2013

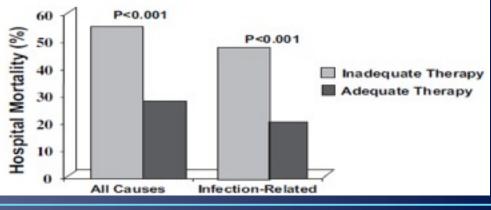
E coli



Staph aureus (Methicillin Sensitive)

100 100	100	100	100	100	100	94	
75							82
50							
25							
0							
Nafcill	i©efazoT	inim/sVat	faconDya	iptomylcii	mezðlædr	acy <mark>Cline</mark>	amycin

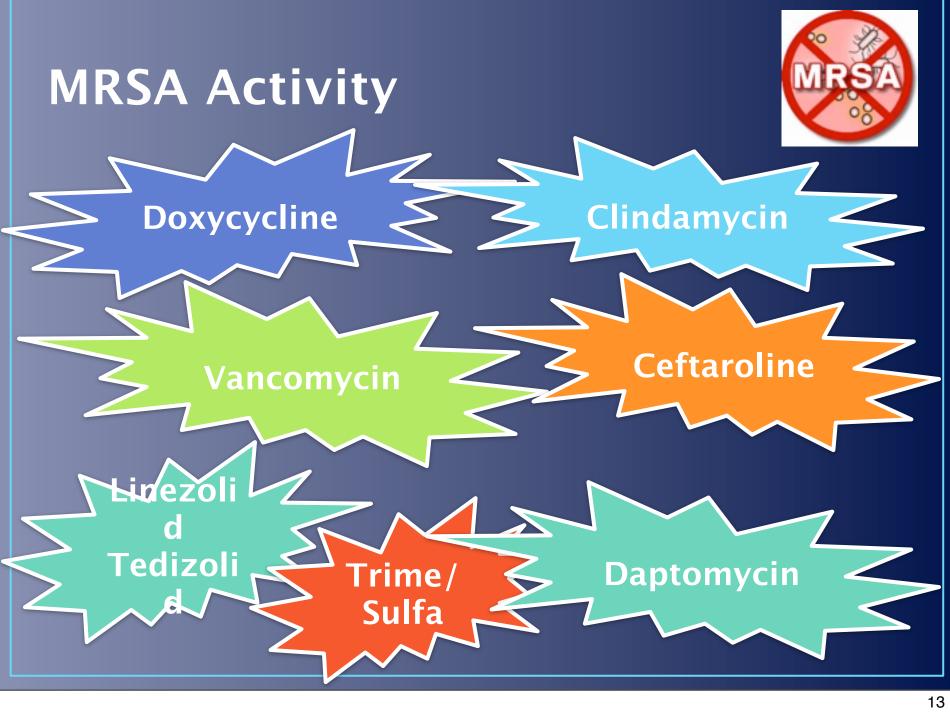
Staph aureus (Methicillin Resistant)

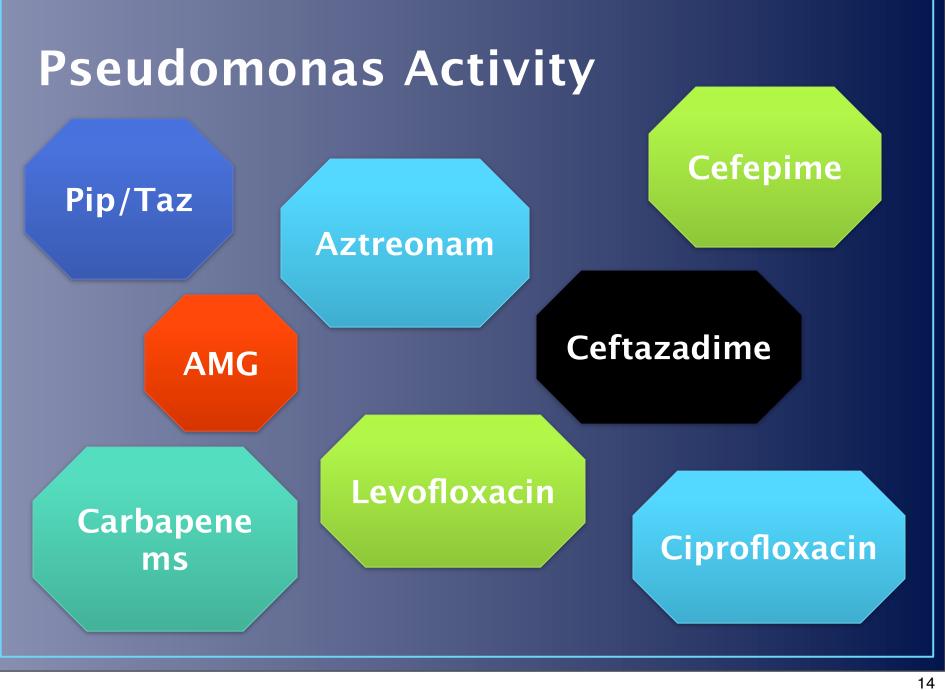

100	100	100	100	98	94	
75						66
50						
25						
C)					
	Linezoli∦a	ancomy@a	ptomyci h ri	m/sulf æ tra	acycli 6 iind	damycin

Appropriate Antibiotic Therapy

- In sepsis, failure to initiate appropriate therapy correlates with increased morbidity and mortality
- Appropriate regimen inhibits microbial isolate(s) in vitro
- 5-fold reduction in survival in sepsis
 - From 52% to 10%
- Empiric regimens should err on the side of over inclusiveness

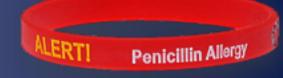
Medication Selection


	2014 Therapy
Diagnosis of Infection	Community vs hospital infections Acute vs chronic infection
Patient Factors	Age, Sex, Weight Drug intolerances Renal/hepatic fx Recent abx use Susceptibility patterns in the community Previously documented pathogens
Medication Factors	Broad-spectrum abx for empiric therapy Narrow- psectrum abx for selective treatment -Cidal vs -static Pharmacokinetics Adverse effects Drug interactions


11

熱扇

The Sanford (



Penicillin Allergies

1 in 10 report "allergy"

- People may become less allergic as time passes
- Determine the nature of the allergy
- Non-anaphylactic reactions
 - Drug fevers and drug rashes, hypersensitivity
- Anaphylactic reactions (~10%)
 - Laryngospasm, bronchospasm, hypotension, and hives

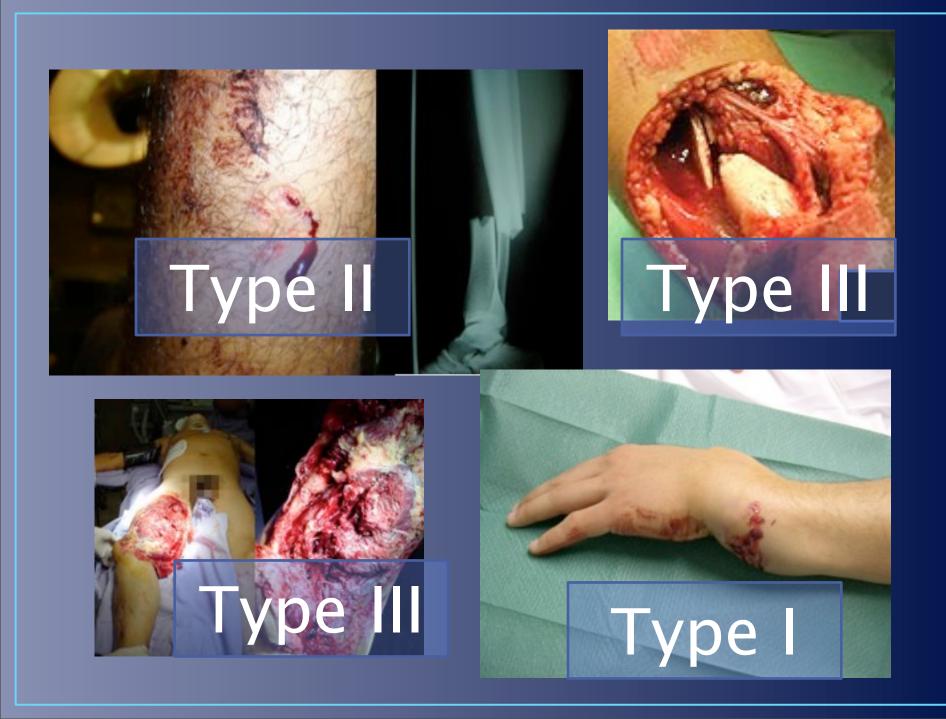
Crit Care Clin 2008; 24:313-334 Ann Emerg Med 2009;54:72-7 J Adv Pharm Technol Res

Penicillin Allergies

- Patients with a known history of non-anaphylactic penicillin reactions may be given cephalosporins without concern
 - Cross-reactivity is <5%, 3rd/4th generation <1%
 - Typically manifested as a drug fever or rash
- Patients known to have had an anaphylactic reaction to penicillin should not be treated with penicillins, cephalosporins or carbapenems
- Cross-reactivity with carbapenems ~10%
- Aztreonam 2g
 - No cross sensitivity with penicillin
 - Only provides gram negative coverage

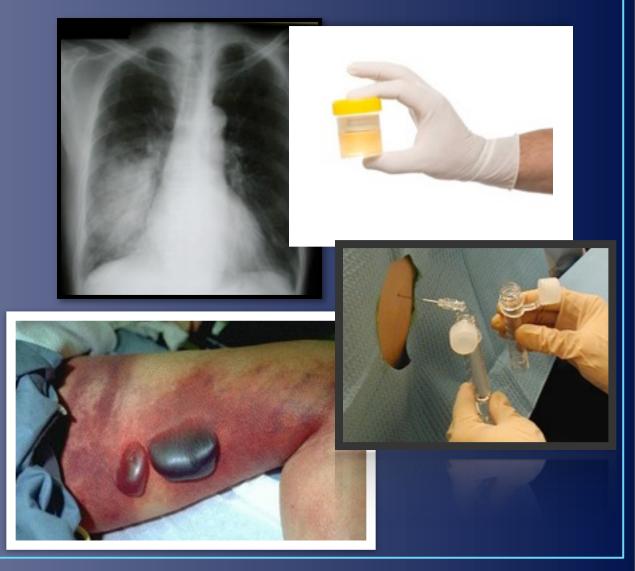
Crit Care Clin 2008; 24:313-334 Ann Emerg Med 2009;54:72-7 J Adv Pharm Technol Res 2010:1(1):11-7

Open Fractures / EAST Guidelines

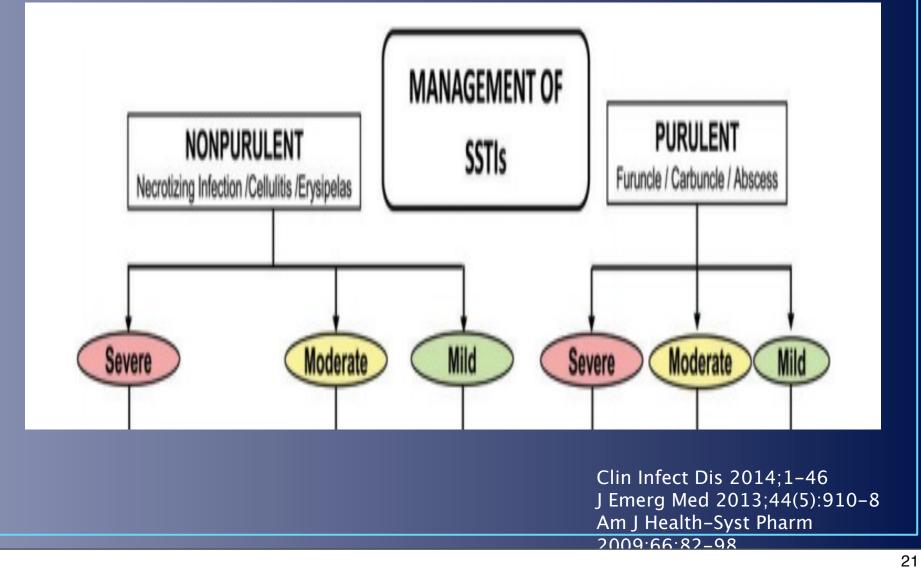

- Antibiotics administered before incision reduces risk of infection
- Bacterial contamination is present preoperatively in 55% of all wounds and in 100% of severe wounds
- Start abx as soon as possible
 - Initiated <3 hours \rightarrow 4.7% infection rate
 - Initiated >3 hours \rightarrow 7.4% infection rate

J Trauma 2011;70(3):751-3 Clin Orthop Relat Res 1989:243:36-40

Open Fracture Classification (Gustilo and Anderson)

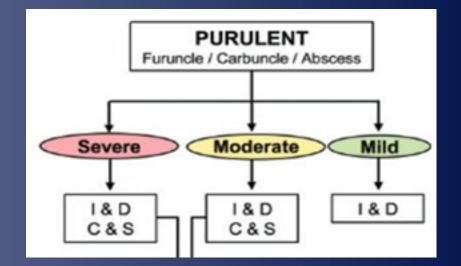

• Add high-dose PCN for fecal or potential clostridial contamination

Gradel	Grade I	Skin wound <1cm long and clean	Cefazolin
Gradel	Grade II	Laceration >1cm without extensive soft tissue damage, flaps or avulsions	Cefazolin
Grade II	Grade III	Open segmental fracture >10cm Extensive soft tissue damage	Cefazolin + Tobramyc
Grade III		J Traun 751-3	na 2011;70(3):



Suspected Source of Infection

- SSTI
- Urosepsis
- CAP
- HCAP/VAP
- Intraabdominal
- Meningitis


SSTI Treatment Points

Abscess Management

- I & D is definitive tx
 ALWAYS
 - NO ANTIBIOTICS
- To treat with abx
 - Temp >38 or <36
 - Tachypnea >24
 - Tachycardia >90
 - WBC >12,000 or <400

Clin Infect Dis 2014;1–46 J Emerg Med 2013;44(5):910–8 Am J Health-Syst Pharm 2009;66:82–98

NCT00729937NCT00730028 NCT00729937

<u>Society of America</u>

Centers for Disease Control

Infectious Diseases

Abscess- When to Add Antibiotics

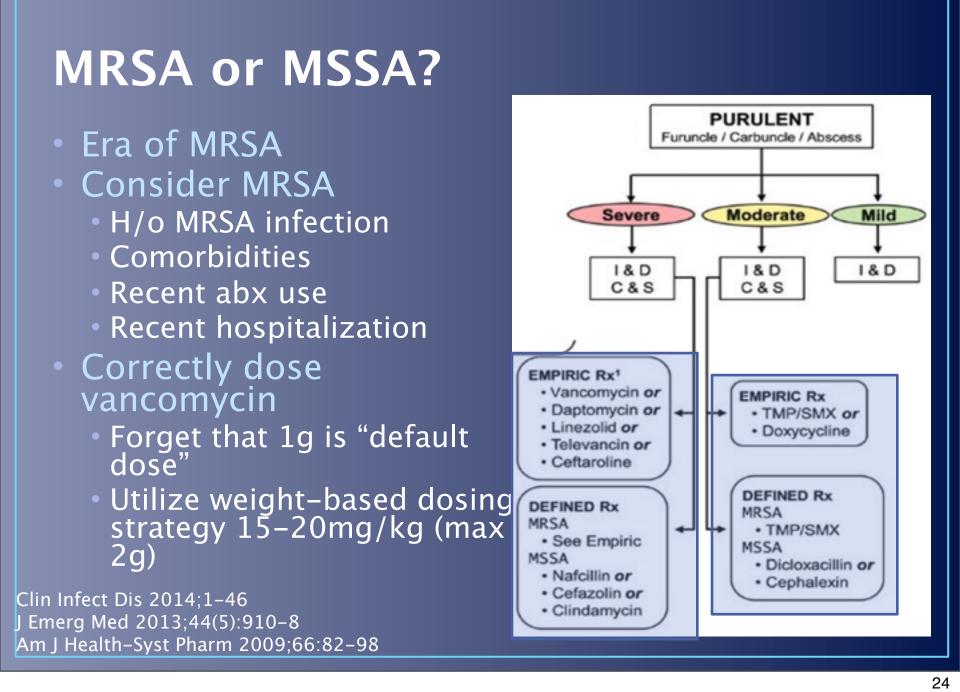
Severe or extensive

Extremes of age

Immunosuppression

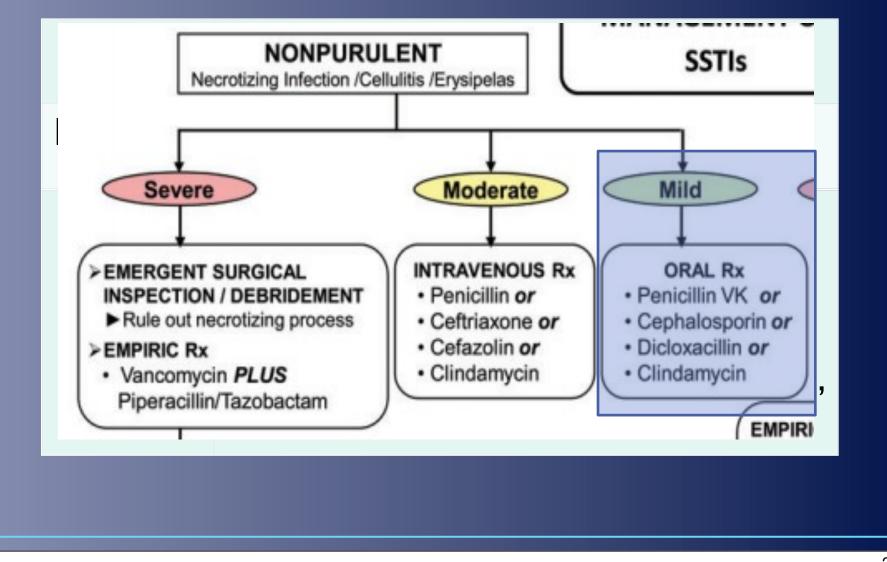
Multiple sites of

Lack of response to I&D


Associated septic

S/s of systemic illness

Abscess in area difficult to drain completely



Clin Infect Dis 2011;52:e18–55 Clin Infect Dis 2014:1–46

increasing MIC with vancomycin

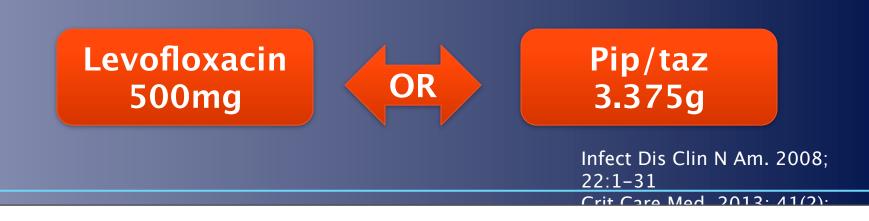
Nonpurulent

Moderate-Severe Cellulitis

- Antibiotic coverage for primarily cellulitic softtissue infections ideally includes both MRSA and streptococcal coverage
- Staph aureus
 - Usually associated with furuncles, carbuncles or abscesses
 - High prevalence of resistance, assume MRSA in at risk population
- Strep

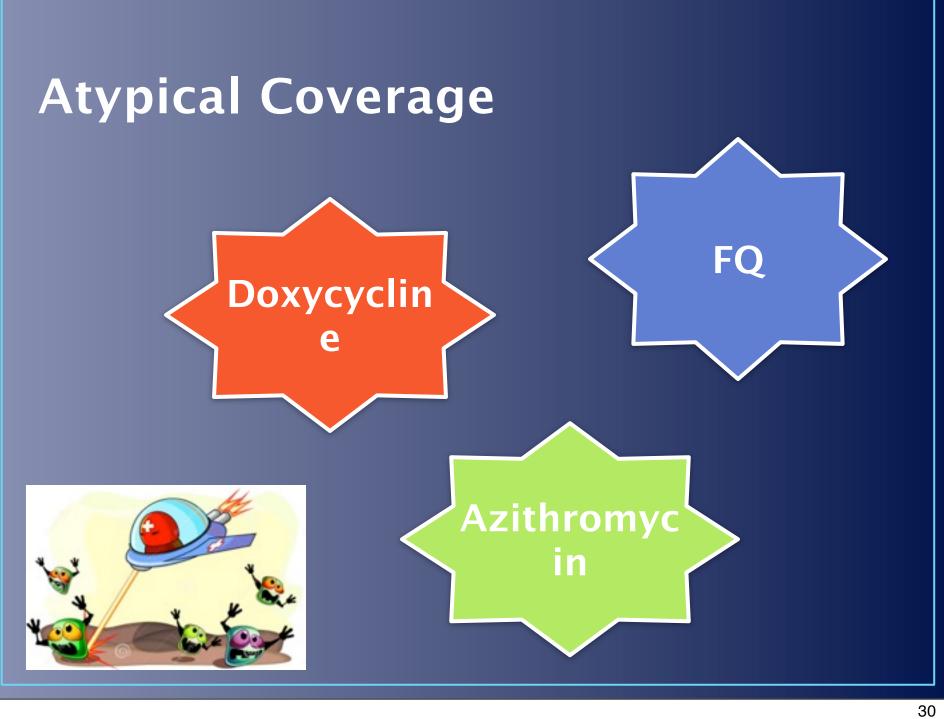
That dose may not be sufficient for all patients

Necrotizing Fasciitis

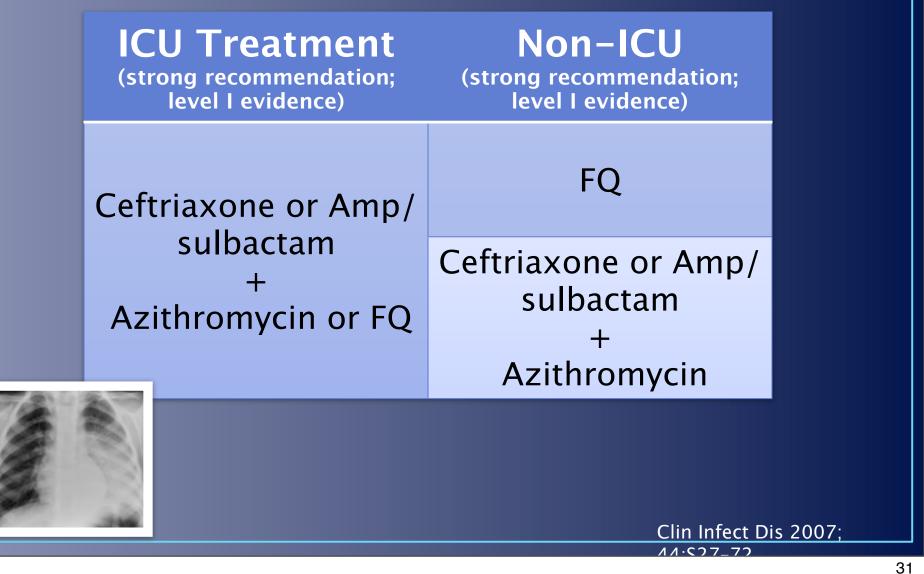

- High mortality 50%-70% in patients with hypotension and organ failure
- S. pyogenes, S. aureus, V. vulnificus, and anaerobic strep sp.
- Staph and hemolytic strep can occur simultaneously
- Necrotizing = SURGERY (source control)
- Empirically add clindamycin to suspected necrotizing fasciitis and/or strep TSS
 - To promote toxin production inhibition and modulation of cytokine production

Pip/taz 3.375g	+	Vancomycin 15mg/kg	4	Clindamycin 600mg
				n Infect Dis. 2005; 41:1373-
			400	
				2

	Gro	up A Streptococcu	<u>s</u> <u>spherical</u>	<u>Gram-positive</u> <u>bacterium</u>	
	antigen <u>cell wall</u>			<u>beta-hemolysis</u>	
	Red Blood Cells	her	<u>noglobin</u>	<u>agar plates</u>	
		<u>Streptococci</u>	<u>catalase</u>		incubation
<u>period</u>				<u>skin flora</u>	
				diagnostic failure	sepsis

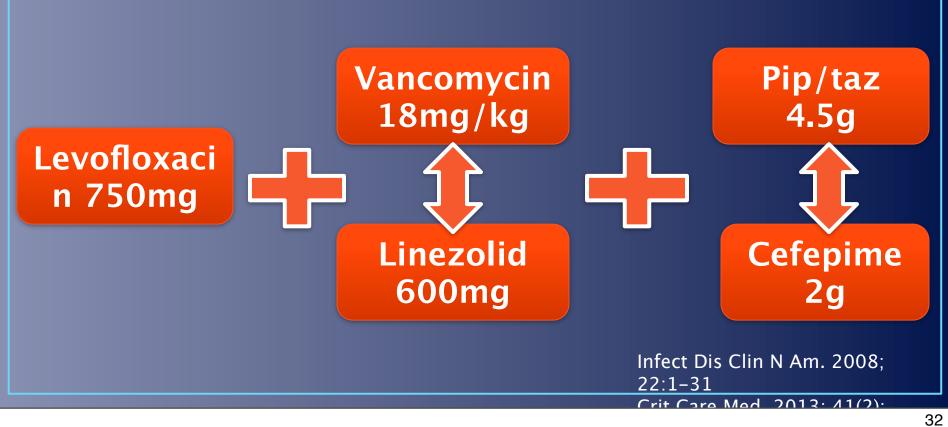

UTI/Urosepsis

- Occurs in pre-existing renal disease, abnormal urinary tract anatomy, foreign bodies (stents), renal or bladder stones, or genitourinary instrumentation with infected urine
- Common pathogens
 - E coli, Proteus, Enterococcus, Klebsiella sp, Pseudomonas

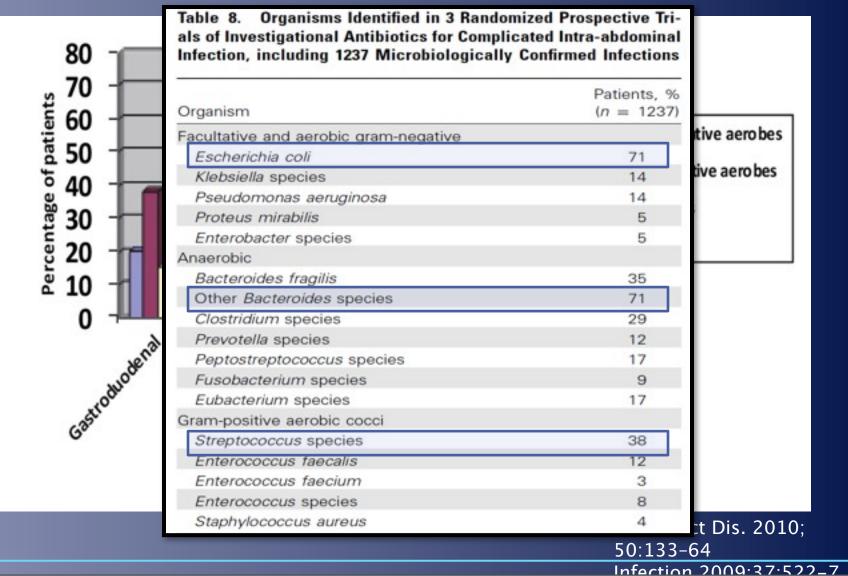


pneumonia.	etiologies of community-acquired	
Patient type	Etiology	
Outpatient	Streptococcus pneumoniae Mycoplasma pneumoniae Haemophilus influenzae Chlamydophila pneumoniae Respiratory viruses ^a	
Inpatient (non-ICU)		Atyp
	Aspiration Respiratory viruses ^a	
Inpatient (ICU)	S. pneumoniae Staphylococcus aureus Legionella species	
	Gram-negative bacilli H. influenzae	t Dis 2

S

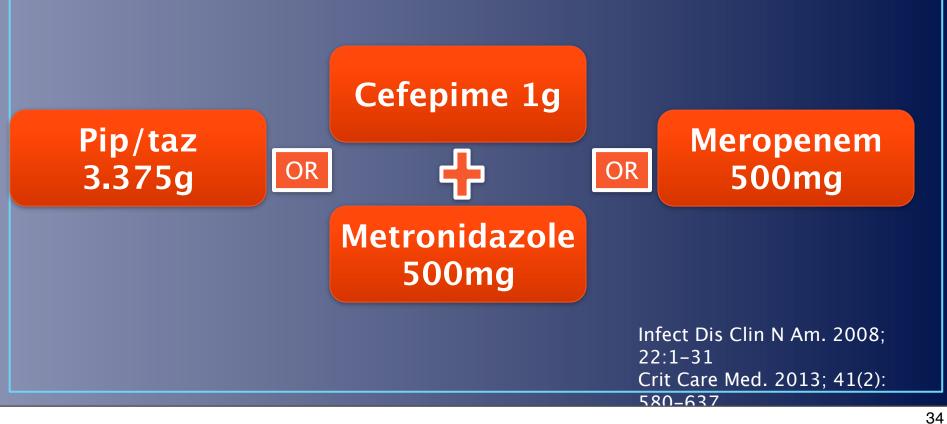


CAP Treatment

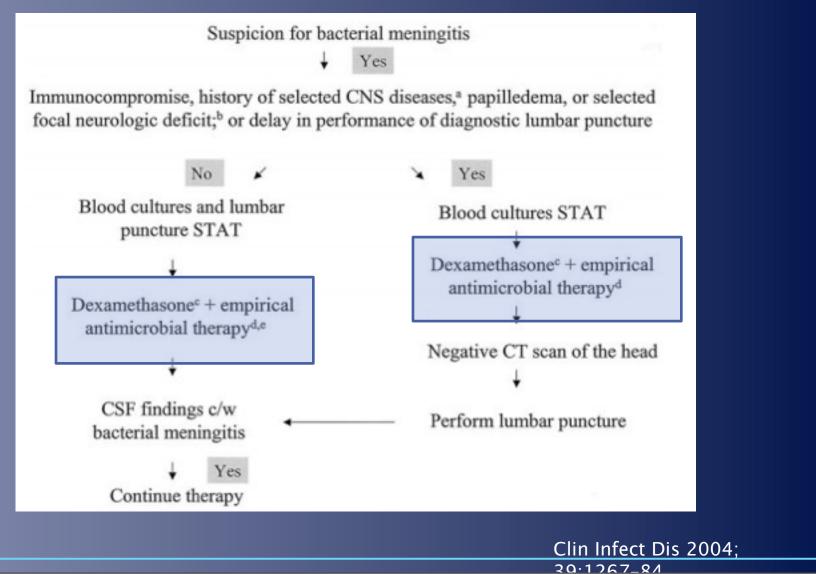


HCAP

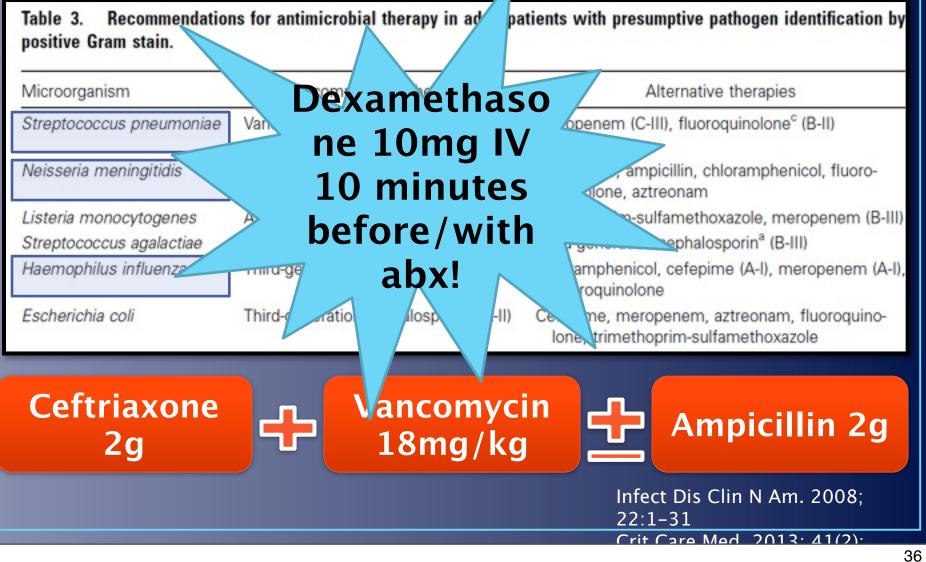
- Community pathogens, plus MDRO
- Pseudomonas, Klebsiella, Acinetobacter, MRSA



Intraabdominal Infections

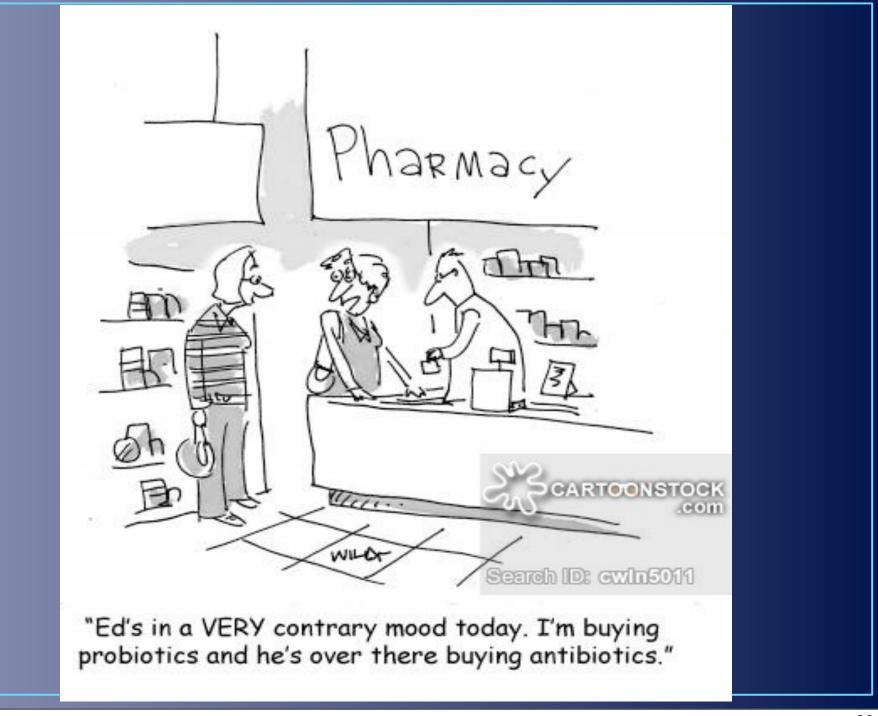


Intraabdominal Infections


• Due to ULH E coli susceptibility rates being <90%, FQ regimen not recommended

Meningitis

Meningitis

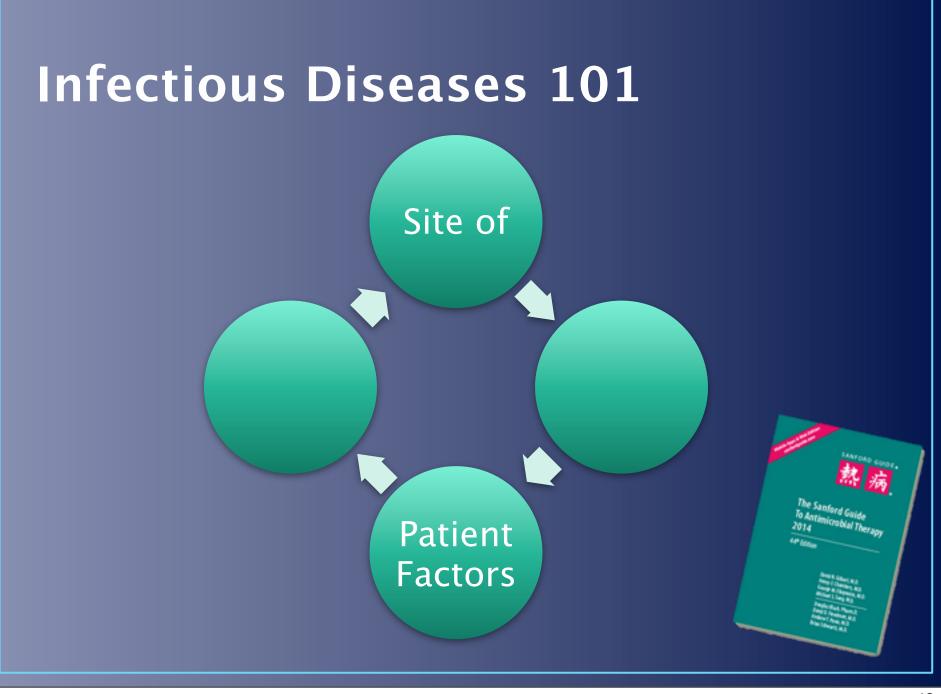

MICU Septic Shock Protocol

CAP	HCAP/VAP	Intra- abdominal
CEFTRIAXONE 1G q24 hours PLUS AZITHROMYCIN 500mg q24 hours	LEVOFLOXACIN 750mg q24 hours PLUS VANCOMYCIN 18mg/kg	CEFEPIME 1g q12 hours PLUS METRONIDAZOLE 500mg q8 hours
LEVOFLOXACIN 750mg q24 hours	-OR - LINEZOLID 600mg q12 hours PLUS PIP/TAZ 4.5g q6 hours _ OR _	PIP/TAZ 3.375g q6 hours

MICU Septic Shock Protocol

Meningitis	UTI	SSTI/Nec fasc
CEFTRIAXONE 2g q12 hours PLUS VANCOMYCIN 18mg/kg	LEVOFLOXACIN 500mg q24 hours	VANCOMYCIN 15mg/kg PLUS PIP/TAZ 3.375g q6 hours
AMPICILLIN 2g q4 hours	PIP/TAZ 3.375g q6 hours	PLUS CLINDAMYCIN 600mg q8 hours
 If penicillin alle 	raic	

 Replace pip/taz or cephalosporin with AZTREONAM 2g q6 hours



Conclusion

IV Abx Before Discharge: Please NO

- No evidence supports its benefit
- Prolongs ED length of stay
- Increases cost of ED visit
- Pharmacokinetics
 - Vancomycin is a time-dependent killer
- Under-dosing is common
- Risk of MDRO

Am J Emerg Med 2014;32(10): 1195–9 J Emerg Med 2015;49:50–7

Diagnosis of infection: Patients factors: Drug factors:

Complicated SSTI

- Toxic shock syndrome (TSS)
 - Group A streptococci or S aureus
 - Characterized by multiorgan dysfunction and may be fatal
 - TSS is primarily a toxinmediated disorder
- Necrotizing fasciitis
 - May be complicated

Infect Dis Clin N Am. 2008; 22:1–31 Crit Care Med. 2013; 41(2): 580–637

Clinical Features Suggestive of Necrotizing Infection

Severe, constant pain

Bullae, related to occlusion of deep blood vessels

Skin necrosis or ecchymosis that precedes skin necrosis

Gas in the soft tissues

Edema that extends beyond the margin of erythema

Cutaneous anesthesia

Systemic toxicity

Rapid spread, especially with appropriate antibiotic therapy

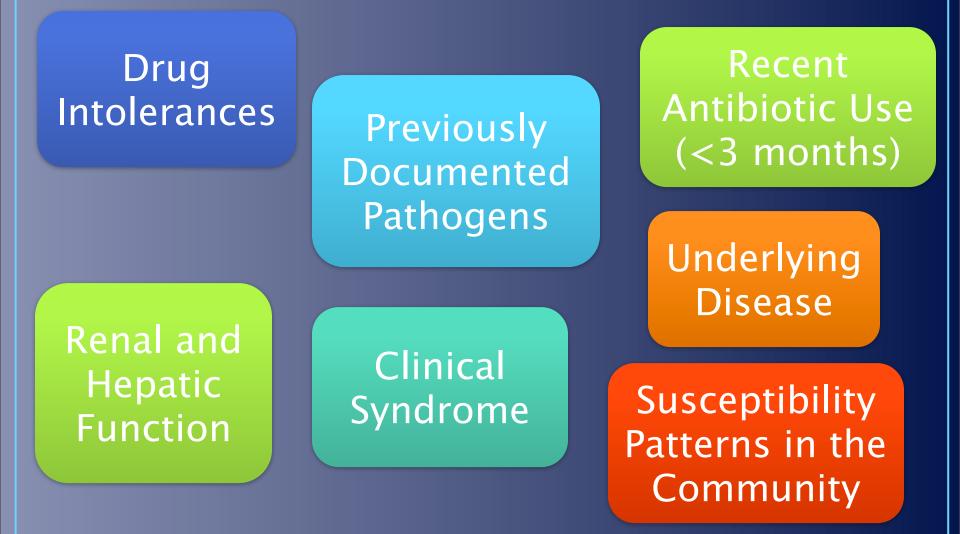
Uncomplicated Cystitis and Pyelonephritis

Clir

Avoid FX, tetracyclines, AMG in pregnancy
Avoid trim/sulfa in late third trimester

Acute Uncomplicated	Acute Pyelonephritis
Nitrofurantoin (100mg po BID x5 days)	Ciprofloxacin
Trim/sulfa (1 DS tab po BID x3 days)	Trim/sulfa
Fosfomycin (3gm PO x1)	
FQ x3 days	
Beta-lactams	
nfect Dis 52(5)	

Medication Selection Cont


- Empiric Therapy
 - Community infection
 - Narrow spectrum
 - Nosocomial infection
 - Broad spectrum, reserved abx
- Targeted Therapy

Empirical th community

hospital infections

Targeted th

Considerations for Empiric Antibiotic Therapy

Treatment Principles

• EARLY GOAL DIRECTED THERAPY

- Aggressive treatment in the ED
- Proven to reduce mortality in severe sepsis/shock
- 16% absolute RR in mortality
- Prompt infection source control
- Culture of pertinent sites
- Early and appropriate empiric antibiotics
- Aggressive circulatory support
- Non-injurious ventilatory support

Zosyn Extended Infusion

• Time dependent killer

 Pharmacodynamic parameter best associated with treatment efficacy is time over the MIC

- Extended infusion strategy has a higher probability of reaching target attainment in pseudomonas than conventional dosing strategies
- Scheduled/continuous orders for pip/taz will be extended infusion only (infused over 4 hours)
- Initial/ one time, "bolus", will be infused over 30 minutes
- For pseudomonas, 4.5g x1 dose in the ER
 - Will be followed by recommended extended infusion

Pharm 2007;27(11):1490-1497)

Time dependent killing effect is best predicted by the percentage of time

48

levels greater than MIC for 60 – 70 % severe infections are best treated by continuous infusion

Pip/taz Extended Infusion

• Go Live Date: Aug 5th

CrCl	>20ml/min	<u>≺</u> 20ml/min, HD, PD						
Usual Dose	Bolus: 3.375g over 30 minutes, followed 4 hours by:	Bolus: 3.375g over 30 minutes, followed 8 hours by:						
	Maintenance: 3.375g over 4 hours q8hrs	Maintenance: 3.375g over 4 hours q12hrs						
Febrile Neutropenia Morbidly Obese	Bolus: 4.5g over 30 minutes, followed 4 hours by:	Bolus: 4.5g over 30 minutes, followed 8 hours by:						
Cystic Fibrosis	Maintenance: 4.5g over 4 hours q8hrs	Maintenance: 4.5g over 4						

Future Antimicrobial Agents For Gram Positives Organisms

- Glycopeptides
 - Telavancin
 - Oritavancin
 - Dalbavancin
- Tetracyclines
 - Tigecycline (broad spectrum activity)
- Cephalosporins
 - Ceftibiprole (5th generation)
 - Excellent gram positive activity (MRSA & Enterococcus)

	AMBULATORY CARE/ED PATIENTS																								
	Includes isolates obtained from: outpatients and inpatients admitted for < 4 days																								
		Total # isolates	Ampicillin	Ampicillin/Sulbactam	Nafcillin	Penicillin	Piperacillin/Tazo	Cefazolin	Ceftriaxone	Cefepime	Meropenem	Aztreonam	Gentamicin	Tobramycin	Amikacin	Ciprofloxacin	Levofloxacin	Clindamycin	Tetracycline	Trimeth/Sulfa	Vancomycin	Daptomycin	Linezolid	Azithromycin	Erythromycin
	Enterobacter cloacae	47		31			85		66	83	100	74	92	92	98	92	92		83	92					
- ⁹	E. coli	642	44	49			97	88	95	97	100	95	90	92	99	76	76		74	72	3	4%	6		
Gram	Klebsiella pneumoniae	135		88			96	91	92	92	96	89	93	93	99	93	94		88	89					
ž	Pseudomonas aeruginosa	159					87			76	90	76	59	80	67	64	65	8	3%						
	Proteus mirabilis	69	90	90			100	90	100	100	100	97	91	93	100	77	81		3	81					
	Enterococcus faecalis	121	100										73 ¹								100	100	99		6%
	Staphylococcus aureus																								
	Methicillin Sensitive (MSSA)	274			100			100										78 ²	98	98	100	99	100	R	2%
Gram	Methicillin Resistant (MRSA)	334			0			0										72 ²	95	98	100	99	100		5%
Pos	Coagulase-negative Staphylococci	54			28															57	100	100	100		
	Streptococcus pneumoniae	57																							
	non-meningeal breakpoints					95			100								98			74	100			66	67
l	meningeal breakpoints					68			93								98			74	100			66	67

51